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Abstract
Accurately segmenting the hippocampus from magnetic resonance (MR) brain images is a crucial step in studying brain 
disorders. However, this task is challenging due to the low signal contrast of hippocampal images, the irregular shape, 
and small structural size of the hippocampi. In recent years, several deep convolutional networks have been proposed for 
hippocampus segmentation, which have achieved state-of-the-art performance. These methods typically use large image 
patches for training the network, as larger patches are beneficial for capturing long-range contextual information. However, 
this approach increases the computational burden and overlooks the significance of the boundary region. In this study, we 
propose a deep learning–based method for hippocampus segmentation with boundary region refinement. Our method involves 
two main steps. First, we propose a convolutional network that takes large image patches as input for initial segmentation. 
Then, we extract small image patches around the hippocampal boundary for training the second convolutional neural network, 
which refines the segmentation in the boundary regions. We validate our proposed method on a publicly available dataset 
and demonstrate that it significantly improves the performance of convolutional neural networks that use single-size image 
patches as input. In conclusion, our study proposes a novel method for hippocampus segmentation, which improves upon 
the current state-of-the-art methods. By incorporating a boundary refinement step, our approach achieves higher accuracy 
in hippocampus segmentation and may facilitate research on brain disorders.
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1 Introduction

With the advancement of artificial intelligence technology 
and computer hardware, computer-aided diagnosis (CAD) 
has attracted increasing attention [1]. Computer-aided 
diagnosis (CAD) refers to the use of computer technology 
and algorithms to assist in the diagnosis of diseases or 
abnormalities in medical images, such as X-rays, MRI, 
CT scans, and ultrasound. CAD systems can help identify 
patterns and features in medical images that may be difficult 
for a human observer to detect or analyze and provide 
quantitative measurements or other diagnostic information 
that can aid in the diagnostic process. These systems can 

help improve the accuracy and efficiency of diagnosis, 
reduce inter-observer variability, and assist in early disease 
detection and treatment.

The hippocampus is a bilateral brain structure involved 
in many brain disorders, such as epilepsy, Alzheimer’s 
disease (AD), and Parkinson’s disease [2–4]. As a critical 
step in CAD, it is important to accurately and automatically 
segment the hippocampus from MR images to study these 
brain disorders. In the past decade, multi-atlas segmentation 
method has been one of the most popular medical image 
segmentation methods and has been widely used in 
the hippocampus segmentation [5–9]. The multi-atlas 
segmentation method uses a set of atlases (an atlas consists 
of an image and its segmentation label) to segment the target 
image and usually includes three steps, i.e., atlas selection 
[10, 11], image registration [12, 13], and label fusion 
[14–16]. In the atlas selection step, atlases that are most 
similar to the target image are selected. Then, each selected 
atlas image is registered to the target image independently, 
obtaining the deformation field from the atlas image to the 
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target image. By using the deformation field, each atlas label 
is warped to the target image. These warped atlas labels are 
fused to obtain the final segmentation of the target image in 
the label fusion step.

The multi-atlas segmentation method has achieved a 
considerable degree of success. However, it usually takes 
several hours to segment the hippocampi of a subject, as 
it requires a number of time-consuming image registra-
tions. In recent years, deep learning–based methods have 
been developed rapidly and have been widely used in the 
medical image segmentation [17, 18]. Most deep learn-
ing–based segmentation methods use fully convolutional 
networks (FCNs) for dense prediction [19]. FCNs take an 
image or image patch of arbitrary size as input and produce 
a correspondingly sized segmentation label as output with 
efficient inference and learning. U-Net is one of the most 
commonly used FCNs in the medical image segmentation 
and consists of a contracting path and a symmetric expand-
ing path [20]. The contracting path is used to exact con-
text information, and the expanding path is used to obtain 
precise localization. The feature maps in the contracting 
path are copied and concatenated to the feature maps in 
the expanding path to provide the detailed image informa-
tion that is lost during the successive pooling operators. 
Based on the structure of U-Net, Oktay et al. [21] added 
an attention mechanism to U-Net, and proposed Attention 
U-Net. Gao et al. [22] used a graph convolutional network 
in U-Net and developed graph U-Nets. To better capture 
long-distance image semantic information, the transformer 
structure was also applied in the U-Net [23].

Deep learning–based methods have been utilized for 
hippocampus segmentation [24–31]. By referring to Lao 
et al. [24], they constructed a 3D multi-task convolutional 
neural network (CNN) for joint automatic hippocampal 
segmentation and AD classification. Nogovitsyn et al. [25] 
evaluated a CNN-based segmentation algorithm for the hip-
pocampus, demonstrating superior performance compared to 
FreeSurfer. In [26], Folle et al. proposed a new network for 
hippocampus head and body segmentation using dilated con-
volutions and deep supervision in 3D U-Net. Ataloglou et al. 
[27] introduced deep CNN ensembles and transfer learning 
for fast and accurate hippocampus segmentation. Xie et al. 
[28] proposed a patch-based canonical neural network for 
near real-time hippocampus segmentation. Cao et al. [29] 
proposed multi-task neural networks for joint hippocam-
pus segmentation and clinical score regression. Kim et al. 
[30] proposed an unsupervised deep learning method for 
hippocampus segmentation. Finally, Zhu et al. [31] intro-
duced a deep learning–based label correction method, which 
was applied in multi-atlas label fusion for hippocampus 
segmentation.

Most of the aforementioned deep learning–based hip-
pocampus segmentation approaches are primarily focused 

on network architecture design. Recently, Isensee et al. [32, 
33] demonstrated that a well-trained U-Net outperforms 
most existing deep learning models and offered several rec-
ommendations for training deep networks, such as employ-
ing larger image patches. According to the human visual 
system, greater emphasis should be placed on the boundary 
region when recognizing or segmenting an image [34, 35]. 
It could increase computational overhead and, more impor-
tantly, overlook the significance of the boundary region 
when employing single-size image patches for training. In 
this study, we present a novel two-stage deep convolutional 
neural network method for hippocampus segmentation. The 
first neural network is used for initial hippocampus seg-
mentation, while the second neural network is utilized for 
hippocampal boundary refinement. The proposed method 
is evaluated on a publicly available dataset, and our results 
demonstrate its efficacy. Our primary contributions can be 
summarized as follows:

(1) We propose a new two-stage deep convolutional 
neural network method for hippocampus segmentation.(2) 
Multi-scale image patches are employed in our approach. 
Large image patches are used in the first stage to capture 
contextual information, while small image patches are 
employed for boundary refinement in the second stage.(3) 
Our experimental findings reveal that our method signifi-
cantly improves the performance of convolutional neural 
networks that employ single-size image patches as input.

2  Methods

The framework of the proposed hippocampus segmentation 
method is shown in Fig. 1. It consists of two steps. In the 
first step, a neural network is proposed for initial segmenta-
tion. Then, the boundary region is refined with the second 
neural network. In the following subsections, we will intro-
duce these two steps, and also the details of training and 
inference.

2.1  Initial hippocampus segmentation

U-Net [20, 36] is applied for the initial segmentation of 
hippocampi. U-Net consists of a contracting path and an 
expanding path, which are shown in the top subfigure of 
Fig. 2. The contracting path is built by alternating one con-
volution block and one 2 × 2 × 2 max pooling operation with 
stride 2. The convolution block consists of two 3 × 3 × 3 con-
volutions, each of which is followed by a batch normaliza-
tion layer and a rectified linear unit (ReLU). Padded convo-
lution layers with a padding size of 1 are used to ensure that 
the spatial dimension of the feature maps is preserved. In the 
contracting path, three max pooling operations are used to 
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contract feature maps by a scale of 1
8
×

1

8
×

1

8
 . The last max 

pooling operation is followed by a convolution block.
Correspondingly, the expanding path is built by alternat-

ing one 2 ×2 × 2 transposed convolution with stride 2, and 
one convolution block that has the same structure as that in 
the contracting path. In total, three transposed convolution 
operations are used to recover the resolution of feature maps 
in the expanding path. The expanding path is followed by 
a 1 × 1 × 1 convolution and a softmax layer, which outputs 
two feature maps for the probabilities of the hippocampus 
and background. The feature maps in the contracting path 
are concatenated to the corresponding feature maps in the 
expanding path to provide the detailed image information 
that is lost during the successive down-sampling steps.

In the initial segmentation, we randomly extract image 
patches with a size of 128 × 128 × 128 in the whole brain 
image as the input of the network. The channel dimension 
of the first convolution block is set to 16 (denoted as the 
base channel dimension) and is multiplied by 2 after each 
pooling operation, and divided by 2 after each transposed 
convolution operation.

2.2  Boundary region refinement

Although large image patches are used for training the neu-
ral network in the initial hippocampus segmentation, there 
still exist some small isolated false positives outside the 
hippocampal region. Two post-processing steps are used to 

remove these artifacts automatically by searching the vox-
els of each automated segmentation to find the connected 
regions and selecting two regions with maximum volumes 
for the left and right hippocampus. Then, boundary regions 
are extracted for the hippocampi, by performing the dilation 
operation and erosion operation successively, with the same 
structure element, i.e., the 3 × 3 × 3 tensor whose elements 
are all 1.

The segmentation of boundary regions is refined by a 
second U-Net, which is shown in the bottom subfigure 
of Fig. 2. To train the network, image patches with sizes 
of 16 × 16 × 16 are randomly extracted from the obtained 
boundary regions. As small image patches are used for 
training, the contracting path of the network contains only 
two max pooling operations to contract feature maps by 
the scale of 1

4
×

1

4
×

1

4
 , and the expanding path contains two 

transposed convolution operations to recover the resolu-
tion of feature maps. The base channel dimension is set 
to 32, which is multiplied by 2 after each pooling opera-
tion and divided by 2 after each transposed convolution 
operation.

2.3  Details of training and inference

The networks are trained by the Adam optimizer with a batch 
size of 4 in the network for the initial segmentation and 15 
in the network for the boundary region refinement. This is 
implemented in Pytorch on a single NVIDIA GeForce RTX 
2080 Ti GPU [37]. The learning rates are initially set to 

Fig. 1  The framework of the proposed method
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0.001 and decay by each iteration with a power of 0.9 using 
a poly learning rate strategy. To increase the training data, 
several data augmentation techniques are used, including 
random cropping image patches; random mirror flipping 
across the axial, coronal, and sagittal planes by a probability 
of 0.5; and random intensity shift between [− 0.1, 0.1] and 
scale between [0.9, 1.1]. The softmax Dice loss is employed 
to train the network [38], which is defined as,

where Yn and Ỹn are the ground truth and predicted prob-
abilities of the n-th image patch, respectively, and N is the 
batch size. L2 Norm is applied for model regularization 
with a weight decay rate of 10−5 . The training process is 

(1)L
(

Y, Ỹ
)

= −
1

N

N
∑

n=1

2 ∙ Yn ∙ Ỹn

Yn + Ỹn

,

Fig. 2  The structure of network 
for initial segmentation (top) 
and the structure of network for 
boundary refinement (bottom)
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stopped after 1000 epochs in the initial segmentation and 
4000 epochs in the boundary refinement.

In the testing stage, patches with a size of 128 × 128 × 128 
are extracted to feed into the trained models with a non-
overlapped sliding window strategy for the initial segmen-
tation. For the boundary refinement, patches with a size of 
16 × 16 × 16 are extracted to feed into the trained models 
with an overlapped sliding window strategy with a stride 
of 8 × 8 × 8, and the average of the probability maps for the 
overlap regions are used to obtain the boundary refinement.

2.4  Evaluation metrics

We evaluate the segmentation results by four segmentation 
evaluation measures: Dice coefficient, Jaccard index, Haus-
dorff distance (HD), and Hausdorff 95 distance (HD95) [39]. 
By denoting A as the reference segmentation label, B as the 
automated segmentation label, and V(S) as the volume of seg-
mentation S , these evaluation measures are defined as:

(2)Dice = 2
V(A ∩ B)

V(A) + V(B)
,

(3)Jaccard =
V(A ∩ B)

V(A ∪ B)
,

(4)
HD = max(H(A,B), H(B,A)), where H(A,B)

= maxe∈�A
(

minf∈�Bd(e, f )
)

,

where �A is the boundary voxels of A , and d(∙, ∙) is the 
Euclidean distance of two points. In these metrics, the first 
two, namely, Dice and Jaccard, are used to evaluate the vol-
umetric overlap between the automated segmentation and 
the reference segmentation. Higher values for these metrics 
indicate better segmentation results. The last two metrics, 
HD and HD95, are used to assess the agreement between 
segmentation boundaries. Lower values for these metrics 
indicate better segmentation results.

3  Experiments and results

3.1  Dataset and pre‑processing

We downloaded a dataset from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.
edu/) as well as the corresponding hippocampus labels, 
which are provided by the EADC-ADNI harmonized seg-
mentation protocol (www. hippo campal- proto col. net) [33]. 
The dataset consists of 135 T1 MRI scans that have been 
processed using a standard preprocessing protocol, including 
alignment along the line passing through the anterior and 
posterior commissures of the brain (AC-PC line), bias field 
correction, and spatial normalization to MNI152 template 
space using affine transformation.

(5)
HD95 ∶ similar to HD, except that 5% data points with the

largest distance are removed before calculation,

Table 1  Four selected metrics (mean ± std) of segmentation results 
using different methods with 30 training subjects. ↑ indicates that a 
larger value corresponds to a higher segmentation accuracy, and ↓ 

indicates that a smaller value corresponds to a higher segmentation 
accuracy. Best results in each row are typeset in bold

UNet64 AttionUNet64 UNet128 AttionUNet128 Proposed

Dice ( ↑) 0.852 ± 0.031 0.836 ± 0.038 0.885 ± 0.023 0.885 ± 0.023 0.893 ± 0.019
Jaccard(↑) 0.744 ± 0.046 0.720 ± 0.054 0.794 ± 0.036 0.794 ± 0.037 0.808 ± 0.032
HD ( ↓) 19.619 ± 26.917 29.899 ± 31.454 11.560 ± 22.337 4.747 ± 8.358 3.844 ± 1.639
HD95 ( ↓) 1.728 ± 1.157 3.737 ± 10.946 1.101 ± 0.222 1.648 ± 5.579 1.041 ± 0.133

Table 2  Four selected metrics (mean ± std) of segmentation results 
using different methods with 90 training subjects. ↑ indicates that a 
larger value corresponds to a higher segmentation accuracy, and ↓ 

indicates that a smaller value corresponds to a higher segmentation 
accuracy. Best results in each row are typeset in bold

UNet64 AttionUNet64 UNet128 AttionUNet128 Proposed

Dice ( ↑) 0.873 ± 0.0285 0.872 ± 0.026 0.894 ± 0.020 0.896 ± 0.020 0.900 ± 0.017
Jaccard(↑) 0.776 ± 0.0437 0.774 ± 0.041 0.809 ± 0.032 0.812 ± 0.032 0.819 ± 0.028
HD ( ↓) 16.275 ± 29.2608 12.532 ± 17.91 6.986 ± 15.776 4.783 ± 10.202 3.393 ± 1.549
HD95 ( ↓) 1.215 ± 0.4787 1.247 ± 0.501 1.031 ± 0.111 1.029 ± 0.132 1.000 ± 0.000

http://www.hippocampal-protocol.net
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By carefully checking the hippocampus labels, we found 
5 subjects whose hippocampus labels and images were not 
matched. Their subject IDs are 002_S_0938, 007_S_1304, 
016_S_4121, 029_S_4279, and 136_S_0429. We used the 
remaining 130 subjects to validate the proposed method. 
This group was divided into training and testing sets in the 
experiment. To persuasively evaluate the proposed method, 
two different partitions were used, of which the first was 
randomly selecting 30 subjects as the training set and the 
remaining 100 subjects as the testing set, and the second 
was randomly selecting 90 subjects as the training set and 
the remaining 40 subjects as the testing set.

3.2  Experiment results

The proposed method was compared with U-Net [20, 36] 
and AttionUNet [21] using two different sizes of image 

patches, i.e., 64 × 64 × 64 and 128 × 128 × 128 . For a fair 
comparison, the same settings were adopted in the learning 
and testing of these networks, including the same learning 
rate strategy, the same data augmentation techniques, and 
the same loss function. The batch size was set to 4, and the 
networks were trained until 4000 epochs.

Table 1 and Table 2 report the four metrics (mean ± std) 
of the segmentation results obtained by different methods 
including U-Net with 64 × 64 × 64 image patches as input 
(UNet64), AttionUNet with 64 × 64 × 64 image patches 
as input (AttionUNet64), U-Net with 128 × 128 × 128 
image patches as input (UNet128), AttionUNet with 128 
×128 × 128 image patches as input (AttionUNet128), and the 
proposed method. Table 1 lists the results using 30 training 
subjects. It shows that the proposed method achieves the best 
segmentation results. For example, it outperforms UNet64, 
AttionUNet64, UNet128, and AttionUNet128 by 4.1%, 5.7%, 
0.8%, and 0.8%, respectively, in terms of the Dice values. 

Fig. 3  Boxplots of four indexes for measuring hippocampus segmentation results by different methods with 30 training subjects
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It also shows that U-Net/AttionUNet with 128 × 128 × 128 
image patches can obtain better segmentation results than 
that with 64 × 64 × 64 image patches. Table 2 lists the results 
using 90 training subjects and supports the same conclusion.

Figures 3 and 4 show boxplots of the four metrics used 
to evaluate the segmentation performance: Dice, Jaccard, 
HD, and HD95. The boxplots display the performance of 
the proposed method and other methods under different 
sizes of training sets, i.e., 30 training subjects in Fig. 3 and 
90 training subjects in Fig. 4. Based on the boxplots, the 
proposed method appears to outperform the other meth-
ods in terms of the four metrics. Specifically, the proposed 
method demonstrates higher values for the Dice and Jac-
card metrics, indicating better volumetric overlap between 
the automated and reference segmentations. The proposed 
method also shows lower values for the HD and HD95 met-
rics, suggesting more accurate segmentation boundaries.

In Figs. 5 and 6, we list the hippocampus segmentation 
results of a randomly selected subject. The segmentation 
obtained by the proposed method is the most similar to the 
manual segmentation that is treated as the ground truth in 
the study. This suggests that the proposed method is likely 
to be accurate and reliable in identifying the boundaries of 
the hippocampus.

4  Discussion

Deep learning–based methods have been widely used 
in medical image segmentation, including hippocampus 
segmentation. The use of fully convolutional networks 
enables image segmentation to be implemented in an end-
to-end fashion, and the segmental label is predicted with 
the same size as the input image. However, due to limited 

Fig. 4  Boxplots of four indexes for measuring hippocampus segmentation results by different methods with 90 training subjects
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computation resources, image patches are often used to 
input deep networks in the field of 3D medical image seg-
mentation, and the patch size is an important parameter. 
Previous studies have suggested that large image patches 

are beneficial for capturing context, while small image 
patches are conducive to learning local image information.

Following the idea of “look closer to segment better,” 
this paper presents a two-stage deep learning method for 

Fig. 5  Hippocampus segmentations of a randomly selected subject, obtained by manual segmentation and different deep learning methods using 
30 training subjects. A Manual segmentation, B UNet64, C AttUNet 64, D UNet128, E AttUNet128, F proposed method

Fig. 6  Hippocampus segmentations of a randomly selected subject, obtained by manual segmentation and different deep learning methods using 
90 training subjects. A Manual segmentation, B UNet64, C AttUNet 64, D UNet128, E AttUNet128, F proposed method
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hippocampus segmentation. The first step uses a U-Net with 
3 pooling operators and large image patches to obtain initial 
hippocampal segmentation, while the second step refines 
the boundary region using another U-Net with 2 pooling 
operators and small image patches. The proposed method is 
validated using both a small training dataset containing 30 
subjects and a large training dataset containing 90 subjects 
and is found to outperform U-Net and Attention U-Net 
with single-size image patches in both settings. Moreover, 
the proposed method has more obvious advantages than 
other methods in the small training dataset, illustrating its 
efficiency in exploiting a limited number of training subjects.

In the proposed method, the network of the first step can 
use light parameters to speed up the training and testing 
process, as it is only used to roughly locate the hippocampus. 
The performance of the proposed method is not compromised 
when using light parameters in the first step, as demonstrated 
in Table 3 by the Dice values of hippocampal segmentation 
results obtained with base channels 8 and 16 in the first 
network. The use of small image patches in the second step 
allows for fast training and testing, making the proposed 
method a promising approach for hippocampus segmentation.

5  Conclusion

The proposed two-stage deep learning method for hippocam-
pus segmentation has exhibited remarkable performance 
compared to other methods that utilize single-size image 
patches. The method enhances UNet64, AttentionUNet64, 
UNet128, and AttentionUNet128 by 4.1%, 5.7%, 0.8%, and 
0.8%, respectively, in terms of the Dice values, when vali-
dated on a publicly available dataset with 30 training sub-
jects. The method is both efficient and effective, particularly 
when dealing with a restricted number of training subjects. 
Therefore, this approach holds potential for various applica-
tions in the diagnosis and treatment of brain disorders.

However, the proposed method also has some limitations. 
It was only evaluated on one publicly available dataset, and 
the generalizability of the method to other datasets remains 
to be validated. Future work could focus on exploring the 
generalizability of the proposed method to other datasets and 
evaluating its performance on larger datasets. It would also 

be interesting to investigate the potential of transfer learning 
or domain adaptation to improve the performance of the 
method when the target dataset is significantly different from 
the training dataset.
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